Validation of a Second-order Slip Model for Transition-regime, Gaseous Flows
نویسنده
چکیده
We discuss and validate a recently proposed secondorder slip model for dilute gas flows. Our discussion focuses on the importance of quantitatively accounting for the effect of Knudsen layers close to the walls. This is important, not only for obtaining an accurate slip model but also for interpreting the results of the latter since in transition-regime flows the Knudsen layers penetrate large parts of the flow. Our extensive validation illustrates the above points by comparing direct Monte Carlo solutions to the slip model predictions for an unsteady flow. Excellent agreement is found between simulation and the slip model predictions up to Kn = 0 4 . , for both the velocity profile and stress at the wall. This demonstrates that the proposed second-order slip model reliably describes arbitrary flowfields (and related stress fields) in a predictive manner at least up to Kn = 0 4 . for both steady and transient problems.
منابع مشابه
Finite Integral Transform Based Solution of Second Grade Fluid Flow between Two Parallel Plates
The importance of the slip flow over the no-slip condition is widely accepted in microscopic scaled domains with the direct impact on microfluidic and nanofluidic systems. The popular Navier Stoke’s (N-S) flow model is largely utilized with the slip flow phenomenon. In the present study, the finite integral transform scheme along with the shift of variables is implemented to solve the equation ...
متن کاملNumerical analysis of gas flows in a microchannel using the Cascaded Lattice Boltzmann Method with varying Bosanquet parameter
Abstract. In this paper, a Cascaded Lattice Boltzmann Method with second order slip boundary conditions is developed to study gas flows in a microchannel in the slip and transition flow regimes with a wide range of Knudsen numbers. For the first time the effect of wall confinement is considered on the effective mean free path of the gas molecules using a function with nonconstant Bosanquet para...
متن کاملCalculation of Friction Coefficient and Analysis of Fluid Flow in a Stepped Micro-Channel for Wide Range of Knudsen Number Using Lattice Boltzmann (MRT) Method
Micro scale gas flows has attracted significant research interest in the last two decades. In this research, the fluid flow of gases in the stepped micro-channel at a wide range of Knudsen number has been analyzed with using the Lattice Boltzmann (MRT) method. In the model, a modified second-order slip boundary condition and a Bosanquet-type effective viscosity are used to consider the veloci...
متن کاملConstant - Wall - Temperature Nusselt Number in Micro and Nano - Channels 1
We investigate the constant-wall-temperature convective heat-transfer characteristics of a model gaseous flow in two-dimensional micro and nano-channels under hydrodynamically and thermally fully developed conditions. Our investigation covers both the slip-flow regime 0<Kn<0.1, and most of the transition regime 0.1,Kn<10, where Kn, the Knudsen number, is defined as the ratio between the molecul...
متن کاملکاربرد و مقایسه روش های بولتزمن شبکه ای مختلف با شبکه بندی غیریکنواخت در شبیه سازی جریان در داخل میکروحفره و میکروکانال
In this study, for the first time, a comparison of single-relaxation-time, multi-relaxation-time and entropic lattice Boltzmann methods on non-uniform meshes is performed and application of these methods for simulation of two-dimensional cavity flows, channel flows and channel flows with sudden expansion is studied in the slip and near transition regimes. In this work, Taylor series expansion a...
متن کامل